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Abstract. The total hadronic γ∗γ∗ cross sections at high energy are calculated as a function of energy and
photon virtuality in a model combining Reggeon exchange, the quark box diagram (a fixed pole in Regge
language) and soft and hard pomeron exchanges evaluated in the context of dipole-dipole scattering. Good
agreement is obtained with the data for the real γγ cross section and for the real photon structure function
F γ

2 . However the model prediction for the γ∗γ∗ cross section is too small. This is attributed to an incorrect
extrapolation of the Q2 dependence of the hard pomeron adopted here. Parametrising it independently
shows that the hard part of the cross section can be well represented by a simple Regge pole with intercept
∼ 1.3.

1 Introduction

The energy available for γ(∗)γ(∗) physics at LEP2 is open-
ing a new window on the study of diffractive phenomena,
both non-perturbative and perturbative. These phenom-
ena occur in each of untagged, single-tagged and double-
tagged reactions via the total hadronic γγ cross section,
σγγ ; the structure function of the real photon, F γ

2 (or
equivalently the γ∗γ cross section); and the total hadronic
γ∗γ∗ cross section, σγ∗γ∗ respectively. Thus in principle
it is possible to study diffraction continuously from the
quasi-hadronic regime dominated by non-perturbative
physics to the realm of perturbative QCD with either sin-
gle or double hard scales. Although measurement of σγ∗γ∗

at high energies breaks new ground, data on F γ
2 at small

x is equally significant. There has been considerable effort
recently to understand the solution to the BFKL equation
[1] in order to find the correct interpretation of the proton
structure function at small x and large Q2. As this has
implications directly for F γ

2 at small x, and ultimately for
σγ∗γ∗ , it is worth summarising the current situation.

The leading order (LO) BFKL resummation [1] of the
flavour singlet evolution equations was initially thought to
provide a powerful tool for understanding the small-x limit
of the proton structure function. It predicted the “hard
pomeron”, the structure function behaving as ∼ x−λ with
λ ∼ 0.5 in conformity with the rapid rise with decreasing
x discovered at HERA [2,3]. However when the NLO cor-
rections to the BFKL resummation were calculated [4,5]
the highest eigenvalue of the BFKL equation was found
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to be negative and large, so much so that it could lead
to negative values of λ. It has been pointed out [6,7] that
this problem can be alleviated by identifying that part of
the NLO corrections with double logarithms in the trans-
verse momenta and resumming them. After ensuring the
consistency of these double logarithms to all orders the
perturbation series is much more convergent. The result
in [7] is particularly stable and gives λ in the range 0.26
to 0.32 for the HERA kinematic regime. The double loga-
rithms are closely associated with the choice of scale. It has
been stressed [8] that the NLO corrections must necessar-
ily contain both renormaliztion and scale ambiguities, and
shown that the NLO corrections to the BFKL are control-
lable if appropriate renormalization scales and schemes are
used, specifically the BLM [9] scheme for scale setting. In
this approach the intercept of the NLO BFKL retains an
extremely weak dependence on Q2 and is smaller than the
original BFKL intercept, having λ ∼ 0.2 over the relevant
experimental Q2 range.

In the standard application of the DGLAP evolution
equations [10] the rapid rise of the proton structure func-
tion at small x is associated with a singularity at N = 0
in the Mellin transform of the DGLAP splitting function.
This singularity is not apparent in the original BFKL LO
summation [1] nor in the NLO corrections of [6,7]. It has
been argued [11] that by analytically continuing in Q2 one
can conclude that the singularities in the complexN -plane
of the Mellin transform of the proton structure function
must also be present at small Q2, and the perturbative
evolution cannot generate new singularities that appear
only at high Q2. In this picture it is natural to associate
the rapid rise of the proton structure function at small x
with a second pomeron [12], very much in the spirit of the
BFKL approach. This hypothesis was successfully tested
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in [12], assuming that the contribution to the proton struc-
ture function from branch points is much weaker than that
from poles and including only three of the latter: the stan-
dard reggeon and soft-pomeron exchanges known from
purely hadronic interactions and a new hard pomeron with
intercept 1 + ε0. An excellent fit was obtained to the data
for x < 0.07 and 0 ≤ Q2 ≤ 2000 GeV2, giving ε0 = 0.42.

In references [1] and [4] through [8] the running of
the coupling constant was not taken fully into account.
A systematic approach to the BFKL equation at NLO
with running coupling is presented in [13], adopting the
BLM [9] scale-setting procedure. The effect is quite dra-
matic, removing all singularities to the right of N = 0 in
the complex N -plane of the Mellin transform of the proton
structure function i.e. there is no power-like behaviour at
small-x from perturbative evolution. The solution factor-
izes into a part describing the evolution in Q2 and a part
describing the input distribution which is infrared domi-
nated and non-calculable. Thus the BFKL equation can
predict only the evolution in Q2 of the structure function,
the x dependence at small x being given partly by the
evolution and partly by the input distribution. The evo-
lution at small x differs significantly from that predicted
from a standard NLO DGLAP treatment. A global fit to
the proton structure function is very successful.

Thus we are currently in the position of having sev-
eral apparently disparate views of small-x physics, and the
quality of the corresponding fits to the F2(x,Q2) data are
such that the latter do not provide the necessary discrim-
ination. Additional reactions are required, for example
measurement of the proton longitudinal structure func-
tion FL(x,Q2) or σγ∗γ∗ at high energies. We concentrate
on the latter, with emphasis on the information which may
be obtained from LEP. The advantage of γ∗γ∗ interactions
is the absence of an initial non-perturbative state (e.g. the
proton) and the presence of a hard component in the pho-
ton wave function, even for the real photon. Together these
ensure that the “hard pomeron” plays a decisive rôle even
at small virtualities. This has been demonstrated recently
[14] for the real γγ cross section, the real photon structure
function F γ

2 , and the reaction γ∗γ∗ → V1V2, where V1, V2
are any one of ρ, ω, φ, J/ψ.

The application of the BFKL formalism to γ∗γ∗ has
been considerd by Brodsky et al [15] and by Boonekamp
et al [16]. In the BFKL formalism there is a problem at
LLO in setting the two mass scales on which the cross sec-
tion depends: the mass µ2 at which the strong coupling αs

is evaluated and the mass Q2
s which provides the scale for

the high energy logarithms. Brodsky et al [15] argue that
µ2 ∼ 10−1Q1Q2 and that Q2

s ∼ 102Q1Q2 are reasonable
choices. However the result is very sensitive to these pa-
rameters and by way of illustration they show that chang-
ing µ2 → 4µ2 or Q2

s → Q2
s/4 alters the predicted cross

section by factors of ∼ 1/4 or ∼ 4 respectively in a typi-
cal LEP experiment. In an attempt to overcome the scale
problem, Boonekamp et al [16] take a phenomenological
approach to estimate the NNLO effects, making use of a
fit [17] to the proton sctructure function using the QCD

dipole picture of BFKL dynamics. This reduces both the
size of the BFKL cross scetion and its energy dependence.

The objective of this paper is to provide a realistic esti-
mate of the known part of the cross section i.e. everything
but the “hard pomeron” component although an estimate
of that will also be given. There is a natural division of
the contributions to the total cross section into quark-
antiquark and multiple-gluon exchange in the t-channel.
In terms of Regge-language the quark-antiquark exchange
corresponds to that of a Reggeon and the gluon exchange
corresponds to that of the Pomeron. In the language of
structure functions the Reggeon exchange is mostly the
valence quark contribution, the Pomeron exchange mostly
the gluon contribution. Due to the different reference
frames of the two approaches there is no strict one-to-
one correspondence. The Regge language is applicable to
photon-photon scattering for values of x sufficiently small,
say x ≤ 0.1, just as for deep inelastic scattering on nu-
cleons. There is an important difference between hadron-
hadron and photon-hadron or photon-photon scattering.
To lowest order in QED there is no quadratic unitarity
relation for the scattering amplitude and hence fixed sin-
gularities in the complex J-plane are possible and at least
in one case (Compton scattering on hadrons) are required
[18] - [20] by current algebra relations[21]. However this
term is purely real and so does not contribute to the nu-
cleon structure function F2. In contrast, the box diagram
in photon-photon scattering, which received much atten-
tion especially in the pre- and early QCD area (see [22] -
[25] and the literature quoted therein) gives rise to a fixed
J-plane singularity which does contribute to F γ

2 . This is
an important point as it means that the valence-quark
term and the box diagram must both be included as they
correspond to different J-plane singularities.

It has been rather usual to approximate the soft-
pomeron contribution to γ(∗)γ(∗) scattering by assuming
dominance of the vector meson resonances in the photon-
channels. This is formally correct if all resonances are
taken into account but that is impractical. Taking only one
or two resonances into account can be misleading even at
small virtuality, and furthermore the treatment of the lon-
gitudinal polarization of the photon is rather arbitrary. We
therefore adopt an approach which considers the hadronic
part of the photons as a superposition of quark-antiquark
dipoles rather than vector mesons. In model investigations
[26] it has been shown that this approach is much more
economical since even for real photons the free photon
wave function with a suitably chosen quark mass gives a
more realistic description of a confined system than a su-
perposition of many vector meson states. It is especially
suited for treating the hard part of the photon, which in
vector dominance can only be described by a superposi-
tion of infinitely many resonances. We thus expect, and
obtain, large deviations from VMD.

The soft pomeron will be described by the interaction
of the dipoles with the physical vacuum which has led to
a satisfactory quantitative description of hadron-hadron
scattering. For small dipole sizes its coupling is propor-
tional to the product of the squares of the dipole radii
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and therefore is strongly suppressed for scattering of pho-
tons with high virtuality. The coupling of two perturbative
gluons to small dipoles has a very different dependence on
the radii which can be rather well described by:

R2
1R

2
2

R2
1 +R2

2
.

Hence we anticipate, not unexpectedly, a strong domi-
nance of perturbative effects if both photons are highly
virtual. It turns out that for γ∗γ∗ scattering this virtu-
ality need not be too high. Already for Q2

1, Q
2
2 ≥ 5GeV2

there is clear evidence for the domination of the purely
perturbative contribution.

The models are discussed in detail in Sect. 2, results are
presented in Sect. 3 and final comments made in Sect. 4.
At the end of Sect. 3 we present some simple fitting func-
tions for the numerical results of our model.

We use the standard notation: W =
√
s is the γ(∗)γ(∗)

c.m. energy; Q2
i = −q2i are the photon virtualities. If one

photon is on shell and one off shell we denote by Q2 the
virtuality of off shell photon and x = Q2

s+Q2 .

2 The model

2.1 The pomeron contribution

For the colour singlet exchange we use an eikonal ap-
proach [27] to high energy scattering particularly suited to
incorporate non-perturbative aspects of QCD. The non-
perturbative behaviour of QCD is treated in the Model
of the Stochastic Vacuum [28,29] which approximates the
IR part of QCD by a Gaussian stochastic process in the
colour field strength. This model yields linear confinent
and can also be applied to high energy hadron-hadron
scattering, or more generally to quark-antiquark dipole-
scattering [30]. The model depends essentially on two typi-
cally non-perturbative parameters, which specify the
Gaussian process mentioned above: the strength of the
gluon correlator and a, the correlation length. These are
related to the slope of the linear confining potential [28,
29]. As it stands the model leads to cross sections which
are constant with increasing energy. The parameters of
the model were fitted to the iso-singlet exchange part of
(anti-)proton-proton scattering at W =

√
s= 20 GeV.

The phenomenologically observed increase with energy of
hadronic total cross sections like s(αP −1) with αP ≈ 1.08
[31] can be incorporated in two ways: either one lets the
radius of the hadrons increase with s [30] - [33], or one
takes the model as a determination of the Regge residue
and adds the Regge-like increase with energy by a factor
(s/s0)(1−αP ) with

√
s0 = 20GeV. These two approaches

give very similar results, and we adopt the latter in this
paper as it is the more convenient in the present context.

Whereas hadron-hadron scattering and soft electropro-
duction processes (i.e. those with low photon virtuality
Q2 ) can be very well described in this way, it is well
known the energy dependence for hard electroproduction

processes is much stronger than indicated by the soft non-
perturbative pomeron. As discussed in the Introduction
the occurence of a second (hard) pomeron as proposed in
[12] can explain the data in a consistent way. This two
pomeron approach was adapted to the MSV model in [34]
and very successfully tested for the electro- and photopro-
duction of vector mesons and, more relevantly here, for the
proton structure function over a wide range of x and Q2.
As in [12] it was found that the soft-pomeron contribution
to F2, after an initial increase with increasing Q2, has a
broad maximum in the region of 5 GeV2 and then de-
creases as Q2 increases further i.e. it exhibits higher-twist
like behaviour. In the context of the present model this is
a consequence of the decreasing interaction strength with
decreasing dipole size.

It is worth recalling the salient features of this version
of the two-pomeron model, to illustrate the distinction be-
tween the soft and the hard pomeron in dipole-dipole scat-
tering. In [34] it was assumed that all dipole amplitudes in
which both dipoles are larger than the correlation length
a = 0.35 fm are dominated by the soft pomeron, and the
energy dependence therefore given by (s/s0)αsoft−1 with√
s0 = 20 GeV and αsoft = 1.08 + 0.25t. This ensures

that the hard pomeron has essentially no impact on purely
hadronic scattering. If at least one of the dipoles is smaller
than a = 0.35 fm then the trajectory is replaced by a fixed
pole αhard = 1.28. This value was chosen as experimen-
tally F2 ∼ s0.28 at Q2 = 20GeV2 and the fixed-pole ap-
proximation made because of the lack of shrinkage in the
J/ψ photoproduction cross section. It turned out that the
model overestimated the non-perturbative contribution of
very small dipoles so it was put to zero if either of the
dipoles is less than 0.16 fm. With only four parameters it
was possible to obtain a good description of data for the
proton structure function and for the electroproduction of
vector mesons without noticeably affecting earlier fits to
hadron-hadron scattering.

We apply this two-pomeron model without change to
the evaluation of the γ(∗)γ(∗) cross sections. It should be
noted that the simple factorisation formula σγγ = σ2

γp/σpp

is no longer applicable in the two-pomeron situation.
The considerations outlined briefly above lead to a

model for the scattering of quark-diquark dipoles on each
other. In order to relate it to γ(∗)γ(∗) interactions we
have to introduce the photon wave function. In [26] it
was shown by model considerations that the lowest-order
perturbative expression for the quark-antiquark content
of the photon, with chiral symmetry breaking and con-
finement being simulated by a Q2-dependent quark mass,
works remarkably well. The quark mass can be determined
by comparing the result for the vector-current correlator
with the analytically continued phenomenological expres-
sion in the Euclidean region. The resulting masses are:

mu,d =

{
m0 (1 −Q2/1.05) : Q2 ≤ 1.05

0 : Q2 ≥ 1.05
(1)

ms =

{
0.15 + 0.16 (1 −Q2/1.6) : Q2 ≤ 1.6

0.15 : Q2 ≥ 1.6
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mc = 1.3

The parameter m0 for the u, d quarks was found to be
m0 = 0.21 ± 0.015 GeV.

2.2 The box diagram

For Compton scattering on hadrons it was shown in [18]
- [20] that the Fubini-Dashen-Gell-Mann sum rules which
relate the integral over the imaginary part of the Comp-
ton amplitude to the electromagnetic form factor F (t)
lead under very general assumptions to a fixed (i.e. t-
independent) pole in the complex J-plane whose residue is
proportional to F (t). The residue is real and hence cannot
contribute to the structure function. Such a fixed J-plane
singularity also occurs in photon-photon scattering due to
the box diagramm. The large-s behaviour of it is inde-
pendent of the momentum transfer and the virtuality and
is of the order i log s which corresponds to a fixed dou-
ble pole. For very large virtualities of the photons or high
quark masses the QCD corrections to the box diagram are
under control [25] and it should not be modified by them
in any essential way. It is thus natural to add the contri-
bution of the box diagram representing this J-plane sin-
gularity to the valence quark contributions corresponding
to the Reggeon exchange without conceptual difficulties of
double counting. The singularity contributes to the imagi-
nary part of the residue and we have a contribution to the
gamma-gamma cross section σbox

γ∗γ∗ = const × log(s)/s.
We give here the full cross section for γ(∗)γ(∗) scatter-

ing for a colour triplet of quarks with mass m and charge
ef = êf · e:

σ(W 2, Q2
1, Q

2
2) = −3π

2
ê4fα

2 |~p |
|~q |W 2 (2)

×
(

8 +
4
(
2m2 −Q2

2
) (

2m2 −Q2
1
)

|~p| |~q| (Q2
2 − 4 |~p| |~q| +Q2

1 +W 2)

− 4
(
2m2 −Q2

2
) (

2m2 −Q2
1
)

|~p| |~q| (Q2
2 + 4 |~p| |~q| +Q2

1 +W 2)

+ 2 (−8 m4+Q4
2+2 Q2

2 Q2
1+Q4

1+W4+4 m2 (Q2
2+Q2

1+W2))
|~p| |~q| (Q2

2+Q2
1+W2)

× log
(
Q2

2 − 4 |~p| |~q| +Q2
1 +W 2

Q2
2 + 4 |~p| |~q| +Q2

1 +W 2

))

with

|~p| =

√
−m2 +

W 2

4
,

|~q| =

√
Q4

2 − 2Q2
2Q

2
1 +Q4

1 + 2Q2
2W

2 + 2Q2
1W

2 +W 4

2W
.

If m2
q � Q2

1 � W 2 and Q2
2 � m2

q we have:

σγ∗γ∗ = 4π2α2F γ
2

= 12πα2


∑

f

ê2f




2

1
W 2

(
log

W 2

m2
q

− 1
)
.

For the case: 0 � Q2
1, Q

2
2 � W 2 we have:

σγ∗γ∗ = 4π2α2F γ
2

= 12πα2


∑

f

ê2f




2

1
W 2

(
log

W 4

Q2
1Q

2
2

− 1
)
.

If at least one of the photon virtualities is smaller than
the internal quark mass the box diagram receives impor-
tant contributions from the IR region and thus depends
crucially on the quark mass. In our approach it is natu-
ral to use therefore for small Q2 the same Q2-dependent
quark mass as in the photon wave function (see equation
1).

2.3 The reggeon

In many respects the contribution from the coupling of
the reggeon to the hadronic content of the photon (ρ, ω,
φ etc.) is the least well-defined. Even with one photon on-
shell, i.e. for the valence quark contribution F γ

2,had to the
hadronic structure function of the real photon, there are
considerable ambiguities [35–37]. In naive Vector Meson
Dominance (VMD) this is given by

1
α
F γ

2,val(x,Q
2) = Fπ

val(x,Q
2)
∑
V

4π
f2

V

, (3)

where the sum is usually over ρ, ω and φ. The ad-
ditional assumption has been made that the vector me-
son structure functions can all be represented by the va-
lence structure function of the pion Fπ

val(x,Q
2). This in

itself is quite an extreme statement, as there is no obvious
reason why the structure function of the short-lived vec-
tor mesons should be the same as those of the long-lived
pion. Additionally it is not clear whether one should take
the simple incoherent sum or allow for coherence effects.
Finally, higher-mass vector mesons must also make some
contribution, but this is almost certainly small for the real
photon as compared to the uncertainties in any estimate
of the hadronic component.

To add to these uncertainties, the pion structure func-
tion is only known experimentally for x > 0.2. To obtain
the structure function in the kinematical domain of in-
terest here, it is necessary to use the DGLAP evolution
equations to fit the data and to extrapolate [38,39]. This
was the approach used by [35,36] in fitting F γ

2 , although
with somewhat different assumptions about the effective
strength of the contribution. In contrast, in [37] the shape
of the hadronic contribution was left free to be determined
by the data, but the normalisation was fixed.

In our previous work [14] we used the DGLAP evolved
pion structure function of [39], and retained only the ρ, ω
and φ in the sum of eqn.(1). At small x (x ≤ 0.1 ) and
small Q2 (Q2 ≤ 25GeV2 ) this can be well parametrised
by

F2,val = C
( Q2

Q2 + a

)1−η
xη (4)
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with a = 0.3 GeV2, C = 0.38 and η = 0.45. Thus for
the valence quark contribution to the γ∗γ cross section we
get

σγ∗γ(s,Q2) = 4π2α2C

s

( s

Q2 + a

)1−η

=
312
s

( s

Q2 + 0.3
)0.55nb. (5)

This simple formula holds to better than 10% over the
(x,Q2) range relevant for LEP. That is the error is much
less than the other uncertainties in estimating this term.

Extrapolating eqn.(3) to Q2 = 0 does not satisfy sim-
ple factorisation. The total γp and pp (pp̄) cross sections
can be described by three terms corresponding to soft
pomeron exchange, C = +1 reggeon exchange and C =
−1 reggeon exchange, with universal powers of s for each.
In the absence of cuts (and the universality implies that
these should be small) each term should factorise indepen-
dently. That is

σi
γγ =

(σi
γp)

2

σi
pp

(6)

where i corresponds to any one of the soft pomeron,
C = +1 reggeon or C = −1 reggeon contributions. The
value of η used in eqns.(2) and (3) corresponds to the fit
to total cross sections of [31], from which one finds

σC=+1
γγ = 216s−ηnb (7)

which is about 1
3 of eqn.(3) in the Q2 → 0 limit. If

one applies factorisation to the latest PDG fit [40] to total
cross sections then the result is approximately midway be-
tween these two extremes although with a somewhat dif-
ferent energy dependence. Thus it seems reasonable, given
all the uncertainties, to take eqns.(3) and (5) as giving up-
per and lower limits respectively to the reggeon exchange
contribution to the total hadronic γγ cross section.

The simplest approach to extending eqn.(3) to the case
when both photons are off-shell is to assume that as it is
a reggeon contribution it should factorise:

σγ∗γ∗(s,Q2
1, Q

2
2) = 4π2α2C

a

(
a

Q2
1 + a

)1−η

×
(

a

Q2
2 + a

)1−η ( s
a

)−η

nb. (8)

with C and a having the same values as before.

3 Results

The pomeron contribution to σγγ is rather sensitive to the
effective light-quark mass mq entering the photon wave
function, varying as ∼ 1/m4

q. This is illustrated in Figs. 1a
and b which show separately the L3 [41,42] and OPAL
[43,44] data and the pomeron model with mq = 210 MeV
and 200 MeV respectively, together with the other con-
tributions to the total cross section. These values of mq

are slightly lower than the 220 MeV used in the earliest
calculations, but have no observable effect on the purely
hadronic predictions of the model and actually serve to
improve slightly the description of high-energy photon-
proton reactions [26,45]. They are also within the ex-
pected range of 210 ± 15 MeV, as determined from the
two point vector function [26]. The sensitivity to mq dis-
appears once Q2 � m2

0.
It is clear that the hard part of the pomeron contribu-

tion becomes increasingly important with increasing en-
ergy, reaching more than 20% of the cross section at a
c.m. energy of 130 GeV. This relatively strong fraction of
the hard part is a consequence of the pointlike coupling
of the photons to the quarks and the resulting singular-
ity at zero distance of the photon wave function. In the
corresonding picture for proton-antiproton scattering the
hard part is only about 1% of the cross section atW = 130
GeV.

The predictions of the same model for the γ∗γ∗ cross
sections at Q2 = 3.5 GeV2 and 14 GeV2 are compared
with the recent L3 data [46] in Table 1 and shown in
Fig. 2. The predictions at Q2= 3.5 GeV2 are slightly be-
low and at 14 GeV2 distinctly below the data, especially
at the higher values of W . This and the many success-
ful tests of the soft pomeron part within the model make
it very likely that the discrepancy is due to a wrong Q2

dependence of the hard part. Therefore in Fig. 3 we plot
the difference between experiment and the sum of soft
pomeron and non-diffractive terms. This difference repre-
sents the hard part of the reaction. It is interesting that
at all virtualities the data can be fitted well with a power
behaviour W 2ε = sε with ε ∼ 0.3, fully consistent with
a hard second pomeron. Of course the error on ε is large
∼ 0.1. The comparatively small contribution to the cross
section from the soft pomeron is directly attributable to
its decreasing interaction strength with decreasing dipole
size (the higher-twist behaviour) found in deep inelastic
scattering [12,34].

We can easily see why the model with parameters
taken from the nucleon structure functions can fail when
applied to the γ∗γ∗ cross section. In Table 2 we give the
power dependence on the dipole size R, and correspond-
ingly Q2, of different terms: perturbative two gluon ex-
change: the genuine non-perturbative contribution: and
the contribution of (naive) vector meson dominance. We
see that for one dipole large (e.g. the nucleon in the struc-
ture functions) the Q2 behaviour is the same for the total
pomeron contribution in the model and the perturbative
two-gluon exchange. Therefore a distinction between the
two is difficult. However this is not the case when the two
dipoles become small. Here the perturbative two-gluon ex-
change falls off much slower with decreasing dipole size
(increasing Q2) than does the pomeron contribution in
the model. It is therefore very plausible that the residue
of the hard pomeron has a Q2 dependence more akin to
that of the perturbative contribution rather than to the
nonperturbative term (as implied in the present model
[34]).
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Fig. 1. Cross sections in nb for γ(∗)γ(∗) scattering for virtualities Q2 = 0, 3.5 and 14 GeV2 respectively compared with OPAL
and L3 data. L3 [41,46], Triangles; L3 [42] and private communication, Stars: OPAL [43], Boxes ; OPAL [44], Diamonds. The
solid curve is our model . It consists of the following contributions: soft pomeron: long dashes; hard pomeron: short dashes;
fixed pole (box): dot-dashes; reggeon: dots. For the L3 data a Q2-dependent quark mass with m0 = 0.21 GeV was used, for the
OPAL data m0 = 0.20 GeV, see equation (1)

If this explanation is correct then the present model
should still give a good description of the structure func-
tion of the real photon, F γ

2 , as the real photon is domi-
nated by a large dipole size. It is similar to, but not ex-
actly the same as, the nucleon structure function but is not
precisely analogous as the real photon has a small-dipole
component not present in the nucleon. The predictions of
the model are compared with F γ

2 data in Fig. 4. They ex-
tend to larger x than in our previous work [14] because of
the inclusion of the box diagram which we omitted pre-
viously : x ≤ min(0.2, Q2/(25 + Q2), i.e W ≥ 5 GeV.
The agreement with experiment is indeed very satisfac-
tory stressing again the reliability of the model if at least
one of the dipoles is large. Figure 5 shows the smooth ex-
trapolation from the purely perturbative domain (Q2 = 0)
to the domain of DIS. It can be seen from the prediction
for W = 50 GeV that at that energy the hard pomeron is
dominant even at moderate virtualities. This stresses the
relevance of F γ

2 as data can be taken at smaller x (higher
W ) and larger Q2 than for the γ∗γ∗ cross section, so it
remains a sensitive probe of the hard pomeron.

Table 2 demonstrates that the model shows a signif-
icant deviation from simple VMD at large Q2, and this

is still valid at small Q2. A comparison of the model and
naive VMD is made in Fig. 5 which shows the ratio of the
model cross section to the VMD cross section as a func-
tion of Q2, normalised to one at Q2 = 0. The two plots
are for the two centre of mass energies of the γ∗γ∗ system
W = 90 GeV and W = 245 GeV.

This deviation from naive VMD is of particular impor-
tance in the present evaluation of the real photon cross
section, σγγ , as the data are untagged and cover a finite
range of Q2. The normal procedure is to assume VMD
to extract σγγ , but our results indicate that this is not
reliable. We fitted our results for the total σγ∗γ∗ cross sec-
tion in the kinematical range 90 < W < 250 GeV and
0 < Q2

i < 3 GeV2 with an ansatz which shows explicitly
the deviation from the naive VMD behaviour for the Q2

dependence and for fixed virtualities it is a simple power
fit for the W -dependence:

σγ∗γ∗ =
(
a+

(
b+ c ∗Q2

1
)) ∗ exp

(−d ∗Q2
1
)

∗ (a+
(
b+ c ∗Q2

2
)) ∗ exp

(−d ∗Q2
2
)

∗1/
(
Q2

1 +m2
ρ

) ∗ 1/
(
Q2

2 +m2
ρ

)
(9)

∗ (W/20 GeV)(e+f∗Q2
1∗exp(−g∗Q2

1))∗(e+f∗Q2
2∗exp(−g∗Q2

2)) .
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Fig. 2. L3 data [41,46] with the soft pomeron, reggeon, and fixed pole (box) contributions subtracted. The solid line is a fit of
the form A × (W/GeV )0.6 with A = 7.6, 1.8, 0.66, 0.54 nb for Q2 = 0, 3.5, 14, and 14.5 GeV2 respectively

Our fit for the seven parameters a-g results in (Q2
i in

GeV2, W and mρ in GeV, σγ∗γ∗ in nano-barns)

a = 9.10, b = 0.398, c = 3.380, d = 0.541,
e = 0.554, f = 0.115, g = 0.276 . (10)

For convenience we give also fitting formulae for the
case of one real and one real or virtual photon as obtained
in the model applicable in the range 10 GeV ≤ W ≤ 150
GeV and 0 ≤ Q2 ≤ 25 GeV2 by the following expressions
(W in GeV, Q2 in GeV2):

σγ(∗)γ(W,Q2) =
1

(Q2 + 0.6)
∗ (A0(Q2) +A1(Q2) log(W/20)

+A2(Q2) (log(W/20))2
)

(11)

For the soft pomeron contribution we have:

A0 =
724.6

Q2 + 5.31

A1 =
142.9

1.666 + 3.114 exp(−Q2) +
√
Q2

A3 = 1.11
√
Q2 + 0.0311

For the hard pomeron:

A0 = 95.67 − 148.15
Q2 + 1

+
79

(Q2 + 1)2

A1 = 68.66 − 116.9
Q2 + 1

+
66.6

(Q2 + 1)2

A3 = 31.83 − 75
Q2 + 2

+
11.45

(Q2 + 1)2

From this expression one obtains the photon structure
function for Q2 6= 0:

1
α
F γ

2 (x,Q2) =
Q2

4πα2σγ(∗)γ(W,Q2) (12)

The expressions for the fixed pole (box) and reggeon
are given analytically through equations (2) and (8) re-
spectively.

4 Summary

The most significant result is that a well-tried model of
diffraction which successfully describes high-energy
hadronic interactions, vector meson production, deep in-
elastic scattering at small x, the real γγ cross section and
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Fig. 3. The photon structure function F γ
2 (x, Q2) as function of x = Q2

W2+Q2 . The data are: L3 [47], Triangles: OPAL [48],
Boxes; OPAL [49], Diamonds: ALEPH [50,51], Stars. The solid curve is our model without adjusted parameters. It consists
of the following contributions: soft pomeron, long dashes; hard pomeron, short dashes; fixed pole, dot-dashes; reggeon, dots.
The OPAL data in the Q2 = 5 GeV2 figure are at 〈Q2〉 = 3.8GeV2; the OPAL data in the Q2 = 15 GeV2 figure are at
〈Q2〉 = 17.6GeV2; and the ALEPH data in the Q2 = 15 GeV2 figure are at 〈Q2〉 = 14GeV2

the structure function of the real photon fails to predict
correctly the γ∗γ∗ cross section even at quite modest pho-
ton virtuality of 〈Q2〉 = 14.0 GeV2. This is clearly due to
the fact that, uniquely among these various processes, the
γ∗γ∗ interaction involves two small dipoles, and empha-
sizes the importance of the γ∗γ∗ cross section as a probe
of the dynamics of the perturbative hard pomeron. If the
genuinely non-perturbative terms i.e. the soft phenomeno-

logical pomeron and Reggeon exchange, together with the
box diagram are subtracted from the γγ and γ∗γ∗ data
then the results can be fittedwith a single power energy
dependence sε with ε = 0.3±0.1. The errors on ε are large,
partly because of the errors on current data and partly be-
cause of the considerable uncertainty in the Reggeon term.
Given the rather low values of Wγ∗γ∗ accessible to LEP
at the higher values of Q2 it is clearly important to get a
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much better understanding of the Reggeon term than we
have at present.

We have noted that the model works very well for the
real γγ cross section and for the real photon structure
function due to the presence of two, respectively one, large
dipoles. Of course the real photon is not a hadron, with
the consequence that there is an important contribution
in the model from the hard pomeron to the real γγ cross
section. However it has to be added that this is, as yet,
not strictly required by the data. Clarification of the re-
maining discrepancies between L3 and OPAL would help,
as would better data at lower energies enabling the Regge
term to be more tightly constrained. The importance of
the hard pomeron is even more marked in the case of the
real photon structure function, although data are not yet

at sufficiently small x for the hard pomeron to dominate.
Data for x ≤ 10−2 and Q2 ≥ 10GeV2 should clearly show
its presence.

Finally we have shown that, within the model, the γ∗γ∗
cross section at small Q2

1, Q
2
2 decreases less quickly with

increasing Q2 than is impled by naive Vector Meson Dom-
inance. As the model underestimates the cross section at
larger Q2 it is likely that the effect at small Q2 is more
marked than we have indicated. As the real γγ cross sec-
tion is obtained at present by extrapolating from non-zero
Q2 using Vector Meson Dominance it is probable that it
is significantly over-estimated.
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Table 1. γ∗γ∗ total cross section in nb. W : γ(∗)γ(∗) c.m. energy
[GeV]; L3: experimental results from L3 [41,46]; F.P.: fixed
pole (box-diagram); R.P.: reggeon-contribution (valence term);
S.P.: soft pomeron (non-perturbative contribution); H.Ex: hard
‘experimental’ contribution: Error: experimental error; H.Mod:
hard contribution extrapolated from the model adapted to the
proton structure function [34]

W L3 F.P. R.P. S.P. H. Ex. Error H. Mod.
Q2 = 3.5
6.5 27 13.1 6.8 0.7 6.3 5 1.4
10.8 20 9.8 4.3 1.1 4.8 3.5 2.2
22.8 21 3.8 2.2 2. 13.0 4.5 4.1
Q2 = 14
13 7.2 3.5 0.9 0.02 2.8 2.5 0.32

21.6 7.2 2.7 0.5 0.04 3.9 2.5 0.48
45.6 8.2 1.1 0.3 0.07 6.8 3.5 0.87
Q2 = 14.5
13.3 7.5 3.4 0.8 0.02 2.5 1.3* 0.30
21.9 7.3 2.6 0.5 0.03 4.17 1.3* 0.48
36.1 5.5 1.5 0.3 0.05 3.65 1.5* 0.68
56.6 7.4 0.8 0.2 0.08 6.3 2.3* 0.99

Table 2. Behaviour of the different contributions leading in
W to the γ∗γ∗ cross section (up to logarithmic terms)

Non-pert. Pert. naive VDM
2 dipoles R2

1 · R2
2 R1 · R2

small: 1
Q2

1·Q2
2

1
Q1·Q2

1
Q4

1·Q4
2

1 dipole R2
i R2

i

small: 1
Q2

i

1
Q2

i

1
Q4

i
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